Estimating covariance matrices using estimating functions in nonparametric and semiparametric regression
We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the literature, ours do not require auxiliary or additional nonparametric regressions.
Year of publication: |
1997
|
---|---|
Authors: | Carroll, Raymond J. ; Iturria, Stephen J. ; Gutierrez, Roberto G. |
Publisher: |
Berlin : Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes |
Subject: | Nonparametric regression | Estimating Equations | Kernel regression | Plug-in Semiparametrics | Smoothing |
Saved in:
freely available
Series: | SFB 373 Discussion Paper ; 1997,14 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 72832475X [GVK] hdl:10419/66254 [Handle] RePEc:zbw:sfb373:199714 [RePEc] |
Source: |
Persistent link: https://www.econbiz.de/10010310772