Estimating non-overfitted convex production technologies : a stochastic machine learning approach
Year of publication: |
2025
|
---|---|
Authors: | Guillen, Maria D. ; Charles, Vincent ; Aparicio, Juan |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 323.2025, 1 (16.5.), p. 224-240
|
Subject: | Data Envelopment Analysis | Machine learning | Stochastic gradient boosting | Technical efficiency measurement | Data-Envelopment-Analyse | Data envelopment analysis | Technische Effizienz | Technical efficiency | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Stochastischer Prozess | Stochastic process | Produktionsfunktion | Production function | Schätzung | Estimation | Prognoseverfahren | Forecasting model |
-
Guillen, María D., (2024)
-
Improving predictions of technical inefficiency
Amsler, Christine Elaine, (2024)
-
España, Victor J., (2025)
- More ...
-
Guillen, Maria D., (2025)
-
Data Science and Productivity Analytics
Charles, Vincent, (2020)
-
Data science and productivity analytics
Charles, Vincent, (2020)
- More ...