Estimation of a covariance matrix with location: Asymptotic formulas and optimal B-robust estimators
Applying the non-singular affine transformations AZ + [mu] to a spherically symmetrically distributed variate Z generates the covariance-location model, indexed by the parameters AAT and [mu], consisting of so-called elliptical distributions. We develop an algebraic machinery that simplifies the derivation of influence functions and asymptotic variance-covariance matrices for equivariant estimators of [Sigma] and [mu] and reveals a natural structure of [Sigma]. In addition, optimal B-robust estimators are derived.
Year of publication: |
1987
|
---|---|
Authors: | Stahel, Werner A. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 22.1987, 2, p. 296-312
|
Publisher: |
Elsevier |
Keywords: | covariance matrix multivariate location elliptical distributions equivariant estimation robust estimation optimal B-robust estimation asymptotic formulas |
Saved in:
Saved in favorites
Similar items by person
-
Statistische Datenanalyse : eine Einführung für Naturwissenschaftler
Stahel, Werner A., (1999)
-
Forecasting demand for special telephone services: A case study
Grambsch, Patricia, (1990)
-
Robust Estimation in the Analysis of Complex Molecular Spectra
Stahel, Werner A., (1994)
- More ...