EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks
| Year of publication: |
2022
|
|---|---|
| Authors: | Kristóf, Tamás ; Virág, Miklós |
| Published in: |
Research in international business and finance. - Amsterdam [u.a.] : Elsevier, ISSN 0275-5319, ZDB-ID 424514-3. - Vol. 61.2022, p. 1-17
|
| Subject: | Bank failure | Classification | Credit risk modeling | Machine learning | Bankinsolvenz | Künstliche Intelligenz | Artificial intelligence | Kreditrisiko | Credit risk | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Theorie | Theory | Lernprozess | Learning process | Entscheidungsbaum | Decision tree | Insolvenz | Insolvency | Kreditwürdigkeit | Credit rating |
-
Predicting mortgage loan defaults using machine learning techniques
Krasovytskyi, Danylo, (2024)
-
Teng, Huei-Wen, (2019)
-
Ghoujdam, Mousaab El Khair, (2024)
- More ...
-
A comprehensive review of corporate bankruptcy prediction in Hungary
Kristóf, Tamás, (2020)
-
A többdimenziós skálázás a csődmodellezésben
Virág, Miklós, (2009)
-
Az első hazai csődmodell újraszámítása neurális hálók segítségével
Virág, Miklós, (2005)
- More ...