Evaluating the performance of metaheuristic based artificial neural networks for cryptocurrency forecasting
Year of publication: |
2024
|
---|---|
Authors: | Behera, Sudersan ; Nayak, Sarat |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 64.2024, 2, p. 1219-1258
|
Subject: | Artificial Intelligence | Artificial neural network | Bitcoin | Chemical reaction optimization | Cryptocurrency | Financial forecasting | Genetic algorithm | Particle swarm optimization | Neuronale Netze | Neural networks | Virtuelle Währung | Virtual currency | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Evolutionärer Algorithmus | Evolutionary algorithm | Heuristik | Heuristics |
-
Hybrid metaheuristic algorithm methods and econometric models in prediction of dogecoin price
Farahani, Milad Shahvaroughi, (2025)
-
Alaminos, David, (2024)
-
Intelligent hybrid model for financial crisis prediction using machine learning techniques
Uthayakumar, J., (2020)
- More ...
-
Das, Subhranginee, (2022)
-
A chemical-reaction-optimization-based neuro-fuzzy hybrid network for stock closing price prediction
Nayak, Sarat, (2019)
-
Extreme learning with chemical reaction optimization for stock volatility prediction
Nayak, Sarat, (2020)
- More ...