Evidence on the Importance of Volatility Density Forecasting for Financial Risk Management
Year of publication: |
[2022]
|
---|---|
Authors: | Mukherjee, Arpita ; Swanson, Norman R. |
Publisher: |
[S.l.] : SSRN |
Subject: | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Risikomanagement | Risk management | Finanzmarkt | Financial market | Schätzung | Estimation |
Extent: | 1 Online-Ressource (47 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 15, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3964200 [DOI] |
Classification: | C14 - Semiparametric and Nonparametric Methods ; C15 - Statistical Simulation Methods; Monte Carlo Methods ; C22 - Time-Series Models ; C52 - Model Evaluation and Testing ; C53 - Forecasting and Other Model Applications ; c58 ; G11 - Portfolio Choice ; G17 - Financial Forecasting |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Prediction of financial downside-risk with heavy-tailed conditional distributions
Mittnik, Stefan, (2003)
-
Casas, Isabel, (2018)
-
Jump variation estimation with noisy high frequency financial data via wavelets
Zhang, Xin, (2016)
- More ...
-
Mukherjee, Arpita, (2018)
-
E-commerce in trade agreements: India's strategies and options
Banerjee, Pritam, (2024)
-
E-commerce in trade agreements: India's strategies and options
Banerjee, Pritam, (2025)
- More ...