Evidential strategies in financial statement analysis : a corpus linguistic text mining approach to bankruptcy prediction
Year of publication: |
2022
|
---|---|
Authors: | Nießner, Tobias ; Gross, Daniel H. ; Schumann, Matthias |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 15.2022, 10, Art.-No. 459, p. 1-15
|
Subject: | text mining | evidential strategies | bankruptcy prediction | financial statement analysis | Insolvenz | Insolvency | Bilanzanalyse | Financial statement analysis | Prognoseverfahren | Forecasting model | Data Mining | Data mining | Text |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm15100459 [DOI] hdl:10419/274979 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Mining semantic features in patent text for financial distress prediction
Jiang, Cuiqing, (2023)
-
Dellepiane, Umberto, (2015)
-
Predicting micro-enterprise failures using data mining techniques
Ptak-Chmielewska, Aneta, (2019)
- More ...
-
Nießner, Tobias, (2022)
-
Konzeptuelles Modell zur objektbegleitendenDatenspeicherung in RFID-gestützten Logistiknetzwerken
Melski, Adam, (2009)
-
Peer to Peer Banking – State of the Art
Frerichs, Arne, (2008)
- More ...