Existence of densities for jumping stochastic differential equations
We consider a jumping Markov process . We study the absolute continuity of the law of for t>0. We first consider, as Bichteler and Jacod [K. Bichteler, J. Jacod, Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel, in: Séminaire de Probabilités XVII, in: L.N.M., vol. 986, Springer, 1983, pp. 132-157] did, the case where the rate of jumping is constant. We state some results in the spirit of those of [K. Bichteler, J. Jacod, Calcul de Malliavin pour les diffusions avec sauts, existence d'une densité dans le cas unidimensionel, in: Séminaire de Probabilités XVII, in: L.N.M., vol. 986, Springer, 1983, pp. 132-157], with rather weaker assumptions and simpler proofs, not relying on the use of stochastic calculus of variations. We next extend our method to the case where the rate of jumping depends on the spatial variable, and this last result seems to be new.
Year of publication: |
2006
|
---|---|
Authors: | Fournier, Nicolas ; Giet, Jean-Sébastien |
Published in: |
Stochastic Processes and their Applications. - Elsevier, ISSN 0304-4149. - Vol. 116.2006, 4, p. 643-661
|
Publisher: |
Elsevier |
Keywords: | Stochastic differential equations Jump processes Absolute continuity |
Saved in:
Saved in favorites
Similar items by person
-
Probabilistic approach of some discrete and continuous coagulation equations with diffusion
Deaconu, Madalina, (2002)
-
Stochastic coalescence with homogeneous-like interaction rates
Fournier, Nicolas, (2009)
-
Malliavin calculus for parabolic SPDEs with jumps
Fournier, Nicolas, (2000)
- More ...