Explainable AI for operational research : a defining framework, methods, applications, and a research agenda
| Year of publication: |
2024
|
|---|---|
| Authors: | De Bock, Koen W. ; Coussement, Kristof ; Caigny, Arno de ; Słowiński, Roman ; Baesens, Bart ; Boute, Robert N. ; Choi, Tsan-Ming ; Delen, Dursun ; Kraus, Mathias ; Lessmann, Stefan ; Maldonado, Sebastián ; Martens, David ; Óskarsdóttir, María ; Vairetti, Carla ; Verbeke, Wouter ; Weber, Richard |
| Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 317.2024, 2 (1.9.), p. 249-272
|
| Subject: | Decision analysis | Explainable artificial intelligence | Interpretable machine learning | XAI | XAIOR | Künstliche Intelligenz | Artificial intelligence | Operations Research | Operations research | Theorie | Theory |
-
A nascent design theory for explainable intelligent systems
Herm, Lukas-Valentin, (2022)
-
Berger, Theo, (2023)
-
Analysis of balancing solutions for simple assembly lines
El Machouti, Sana, (2024)
- More ...
-
Caigny, Arno de, (2020)
-
Optimizing the preventive maintenance frequency with causal machine learning
Vanderschueren, Toon, (2023)
-
Explainable analytics for operational research
De Bock, Koen W., (2024)
- More ...