Explainable Subgradient Tree Boosting for Prescriptive Analytics in Operations Management
Year of publication: |
2020
|
---|---|
Authors: | Notz, Pascal Markus |
Publisher: |
[S.l.] : SSRN |
Subject: | Prozessmanagement | Business process management | Theorie | Theory | Data Mining | Data mining |
Extent: | 1 Online-Ressource (34 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 4, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3567665 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Multi-Paradigm Process Mining : Retrieving Better Models by Combining Rules and Sequences
De Smedt, Johannes, (2014)
-
Mathematical modeling for further improving task scheduling on Big Data systems
Souravlas, Stavros, (2023)
-
Towards improving the representational bias of process mining
Aalst, Wil van der, (2012)
- More ...
-
Explainable subgradient tree boosting for prescriptive analytics in operations management
Notz, Pascal Markus, (2024)
-
Prescriptive Analytics for Flexible Capacity Management
Notz, Pascal Markus, (2020)
-
Prescriptive Analytics for a Multi-Shift Staffing Problem
Notz, Pascal Markus, (2020)
- More ...