Exploiting sports-betting market using machine learning
Year of publication: |
2019
|
---|---|
Authors: | Hubáček, Ondřej ; Šourek, Gustav ; Železný, Filip |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 35.2019, 2, p. 783-796
|
Subject: | Evaluating forecasts | Sports forecasting | Decision making | Probability forecasting | Neural networks | Neuronale Netze | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Prognose | Forecast | Sport | Sports |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: Volume 37, issue 3 (July/September 2021), Seite 1304-1305 |
Other identifiers: | 10.1016/j.ijforecast.2019.01.001 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
On determining probability forecasts from betting odds
Štrumbelj, Erik, (2014)
-
A calibration method with dynamic updates for within-match forecasting of wins in tennis
Kovalchik, Stephanie, (2019)
-
A profitable model for predicting the over/under market in football
Wheatcroft, Edward, (2020)
- More ...
-
Forty years of score-based soccer match outcome prediction : an experimental review
Hubáček, Ondřej, (2022)
-
Beating the market with a bad predictive model
Hubáček, Ondřej, (2023)
-
Competing in daily fantasy sports using generative models
Mlčoch, David, (2024)
- More ...