Exploiting the low-risk anomaly using machine learning to enhance the Black-Litterman framework : evidence from South Korea
Year of publication: |
2018
|
---|---|
Authors: | Pyo, Sujin ; Lee, Jaewook |
Published in: |
Pacific-Basin finance journal. - Amsterdam [u.a.] : Elsevier, ISSN 0927-538X, ZDB-ID 1343420-2. - Vol. 51.2018, p. 1-12
|
Subject: | Low-risk anomaly | Machine learning models | Low beta | The Black-Litterman model | Volatility prediction | Künstliche Intelligenz | Artificial intelligence | Südkorea | South Korea | CAPM | Prognoseverfahren | Forecasting model | Volatilität | Volatility | Portfolio-Management | Portfolio selection | Schätzung | Estimation |
-
Hybrid ML models for volatility prediction in financial risk management
Kumar, Satish, (2025)
-
Yan, Keyue, (2024)
-
Idiosyncratic volatility, returns, and mispricing : no real anomaly in sight
Zaremba, Adam, (2018)
- More ...
-
Do FOMC and macroeconomic announcements affect Bitcoin prices?
Pyo, Sujin, (2020)
-
Do FDI Inflows influence Merchandise Exports? Causality Analysis on India over 1991-2016
Chakraborty, Debashis, (2016)
-
A tandem clustering process for multimodal datasets
Cho, Catherine, (2006)
- More ...