Exploring the use of satellite imagery and computer vision-based machine learning method to improve the spatial granularity of poverty statistics
| Year of publication: |
2025
|
|---|---|
| Authors: | Hofer, Martin ; Sako, Tomas ; Martinez, Arturo ; Bulan, Joseph ; Addawe, Mildred ; Durante, Ron Lester ; Martillan, Marymell |
| Published in: |
Asian economic journal : journal of the East Asian Economic Association. - Oxford [u.a.] : Wiley-Blackwell, ISSN 1467-8381, ZDB-ID 2009850-9. - Vol. 39.2025, 1, p. 98-129
|
| Subject: | big data | deep learning | machine learning | official statistics | poverty | SDG | Künstliche Intelligenz | Artificial intelligence | Armut | Poverty | Big Data | Big data | Statistische Methode | Statistical method | Datenerhebung | Data collection | Weltraumtechnik | Space technology |
-
Applying artificial intelligence on satellite imagery to compile granular poverty statistics
Hofer, Martin, (2020)
-
Predicting poverty using geospatial data in Thailand
Puttanapong, Nattapong, (2020)
-
Poverty from space : using high resolution satellite imagery for estimating economic well-being
Engstrom, Ryan, (2022)
- More ...
-
Applying artificial intelligence on satellite imagery to compile granular poverty statistics
Hofer, Martin, (2020)
-
Applying artificial intelligence on satellite imagery to compile granular poverty statistics
Hofer, Martin, (2020)
-
Compiling granular population data using geospatial information
Mitterling, Thomas, (2021)
- More ...