Extending business failure prediction models with textual website content using deep learning
| Year of publication: |
2023
|
|---|---|
| Authors: | Borchert, Philipp ; Coussement, Kristof ; Caigny, Arno de ; De Weerdt, Jochen |
| Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 306.2023, 1 (1.4.), p. 348-357
|
| Subject: | Analytics | Business failure prediction | Text mining | NLP | Deep learning | Prognoseverfahren | Forecasting model | Insolvenz | Insolvency | Data Mining | Data mining | Website | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process |
-
Liu, Rong, (2020)
-
Predicting Amazon customer reviews with deep confidence using deep learning and conformal prediction
Norinder, Ulf, (2022)
-
Semi-supervised discovery of DNN-based outcome predictors from scarcely-labeled process logs
Folino, Francesco, (2022)
- More ...
-
Industry-sensitive language modeling for business
Borchert, Philipp, (2024)
-
Multi-Paradigm Process Mining : Retrieving Better Models by Combining Rules and Sequences
De Smedt, Johannes, (2014)
-
An expert-validated bridging model for IoT process mining
Bertrand, Yannis, (2024)
- More ...