Extensive-Form Games and Strategic Complementarities
I prove the subgame-perfect equivalent of the basic result for Nash equilibria in normal-form games of strategic complements: the set of subgame-perfect equilibria is a non-empty, complete lattice. For this purpose I introduce a device that allows the study of the set of subgame-perfect equilibria as the set of fixed points of a correspondence. The correspondence has a natural interpretation. My results are limited because extensive-form games of strategic complementarities turn out| surprisingly|to be a very restrictive class of games.