Extremal properties of sums of Bernoulli random variables
We build optimal exponential bounds for the probabilities of large deviations of sums Sn=[summation operator]1n Xi of independent Bernoulli random variables from their mean n[mu]. These bounds depend only on the sample size n. Our results improve previous results obtained by Hoeffding and, more recently, by Talagrand. We also prove a global stochastic order dominance for the Binomial law and shows how this gives a new explanation of Hoeffding's results.
Year of publication: |
2003
|
---|---|
Authors: | León, Carlos A. ; Perron, François |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 62.2003, 4, p. 345-354
|
Publisher: |
Elsevier |
Keywords: | Large deviations Convex ordering Bernoulli random variables |
Saved in:
Saved in favorites
Similar items by person
-
A statistical model for random rotations
León, Carlos A., (2006)
-
Maximum asymptotic variance of sums of finite Markov chains
León, Carlos A., (2001)
-
El conflicto entre producción, sociedad y medio ambiente: la expansión agrícola en el sur de Salta
León, Carlos A., (1985)
- More ...