Factorisable Multitask Quantile Regression
Year of publication: |
2020
|
---|---|
Authors: | Chao, Shih-Kang ; Härdle, Wolfgang Karl ; Yuan, Ming |
Publisher: |
Berlin : Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" |
Subject: | Factor model | quantile regression | non-asymptotic analysis | multivariate regression | nuclear norm regularization |
Series: | IRTG 1792 Discussion Paper ; 2020-004 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | hdl:10419/230810 [Handle] RePEc:zbw:irtgdp:2020004 [RePEc] |
Classification: | C13 - Estimation ; c38 ; C61 - Optimization Techniques; Programming Models; Dynamic Analysis ; G17 - Financial Forecasting |
Source: |
-
Factorisable Multitask Quantile Regression
Chao, Shih-Kang, (2020)
-
Hartkopf, Jan Patrick, (2022)
-
The merit of high-frequency data in portfolio allocation
Hautsch, Nikolaus, (2011)
- More ...
-
Factorisable sparse tail event curves
Chao, Shih-Kang, (2015)
-
Factorisable multi-task quantile regression
Chao, Shih-Kang, (2016)
-
Factorisable Multi-Task Quantile Regression
Härdle, Wolfgang, (2017)
- More ...