Factorisable Multitask Quantile Regression
| Year of publication: |
2020
|
|---|---|
| Authors: | Chao, Shih-Kang ; Härdle, Wolfgang Karl ; Yuan, Ming |
| Publisher: |
Berlin : Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" |
| Subject: | Factor model | quantile regression | non-asymptotic analysis | multivariate regression | nuclear norm regularization |
| Series: | IRTG 1792 Discussion Paper ; 2020-004 |
|---|---|
| Type of publication: | Book / Working Paper |
| Type of publication (narrower categories): | Working Paper |
| Language: | English |
| Other identifiers: | hdl:10419/230810 [Handle] RePEc:zbw:irtgdp:2020004 [RePEc] |
| Classification: | C13 - Estimation ; c38 ; C61 - Optimization Techniques; Programming Models; Dynamic Analysis ; G17 - Financial Forecasting |
| Source: |
-
Factorisable Multitask Quantile Regression
Chao, Shih-Kang, (2020)
-
The merit of high-frequency data in portfolio allocation
Hautsch, Nikolaus, (2011)
-
Hartkopf, Jan Patrick, (2022)
- More ...
-
Factorisable multi-task quantile regression
Chao, Shih-Kang, (2016)
-
Factorisable sparse tail event curves
Chao, Shih-Kang, (2015)
-
Factorisable Multitask Quantile Regression
Chao, Shih-Kang, (2020)
- More ...