Factorisable sparse tail event curves
Year of publication: |
2015
|
---|---|
Authors: | Chao, Shih-Kang ; Härdle, Wolfgang Karl ; Yuan, Ming |
Publisher: |
Berlin : Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk |
Subject: | high-dimensional data analysis | multivariate quantile regression | quantile regression | value-at-risk | nuclear norm | multi-task learning |
Series: | SFB 649 Discussion Paper ; 2015-034 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | 831851198 [GVK] hdl:10419/122013 [Handle] RePEc:zbw:sfb649:sfb649dp2015-034 [RePEc] |
Classification: | c38 ; c55 ; C63 - Computational Techniques ; G17 - Financial Forecasting ; G20 - Financial Institutions and Services. General |
Source: |
-
Factorisable sparse tail event curves
Chao, Shih-Kang, (2015)
-
Factorisable Multi-Task Quantile Regression
Härdle, Wolfgang, (2017)
-
Machine Learning at Central Banks
Chakraborty, Chiranjit, (2017)
- More ...
-
Factorisable multi-task quantile regression
Chao, Shih-Kang, (2016)
-
Factorisable Multitask Quantile Regression
Chao, Shih-Kang, (2020)
-
Factorisable Multi-Task Quantile Regression
Härdle, Wolfgang, (2017)
- More ...