Federated optimization under intermittent client availability
| Year of publication: |
2024
|
|---|---|
| Authors: | Yan, Yikai ; Niu, Chaoyue ; Ding, Yucheng ; Zheng, Zhenzhe ; Tang, Shaojie ; Li, Qinya ; Wu, Fan ; Lyu, Chengfei ; Feng, Yanghe ; Chen, Guihai |
| Published in: |
INFORMS journal on computing : JOC ; charting new directions in operations research and computer science ; a journal of the Institute for Operations Research and the Management Sciences. - Linthicum, Md. : INFORMS, ISSN 1526-5528, ZDB-ID 2004082-9. - Vol. 36.2024, 1, p. 185-202
|
| Subject: | client availability | federated learning | nonconvex optimization | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Föderalismus | Federalism |
-
Optimal policy computing for blockchain based smart contracts via federated learning
Dai, Wanyang, (2022)
-
A proximal quasi-Newton trust-region method for nonsmooth regularized optimization
Aravkin, Aleksandr, (2021)
-
Sparse solutions by a quadratically constrained q (0 < q < 1) minimization model
Jiang, Shan, (2021)
- More ...
-
Fast approximation algorithm for maximum lifetime aggregation trees in wireless sensor networks
Zhu, Xiaojun, (2016)
-
Dou, Wanchun, (2007)
-
Doulabi, Hossein Hashemi, (2016)
- More ...