Fighting sampling bias : a framework for training and evaluating credit scoring models
Year of publication: |
2025
|
---|---|
Authors: | Kozodoi, Nikita ; Lessmann, Stefan ; Moreira-Matias, Luis ; Papakonstantinou, Konstantinos |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 324.2025, 2 (16.7.), p. 616-628
|
Subject: | Credit scoring | Machine learning | OR in banking | Reject inference | Sampling bias | Kreditwürdigkeit | Credit rating | Stichprobenerhebung | Sampling | Künstliche Intelligenz | Artificial intelligence | Systematischer Fehler | Bias | Theorie | Theory | Kreditrisiko | Credit risk |
-
Fairness in credit scoring : assessment, implementation and profit implications
Kozodoi, Nikita, (2022)
-
Interpretable machine learning for imbalanced credit scoring datasets
Chen, Yujia, (2024)
-
Machine learning in credit risk : measuring the dilemma between prediction and supervisory cost
Alonso, Andrés, (2020)
- More ...
-
Fairness in credit scoring : assessment, implementation and profit implications
Kozodoi, Nikita, (2022)
-
Machine learning for credit risk analytics
Kozodoi, Nikita, (2022)
-
Data Driven Value-at-Risk Forecasting Using a SVR-GARCH-KDE Hybrid
Lux, Marius, (2018)
- More ...