Flexible mixture-amount models using multivariate Gaussian processes
| Year of publication: |
2020
|
|---|---|
| Authors: | Ruseckaite, Aiste ; Fok, Dennis ; Goos, Peter |
| Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 38.2020, 2, p. 257-271
|
| Subject: | Advertising mix | Gaussian process prior | Mixtures of components | Mixtures of ingredients | Nonparametric Bayes | Bayes-Statistik | Bayesian inference | Statistische Verteilung | Statistical distribution | Theorie | Theory | Nichtparametrisches Verfahren | Nonparametric statistics | Stochastischer Prozess | Stochastic process | Werbung | Advertising | Gauß-Prozess | Gaussian process |
-
Flexible mixture-amount models for business and industry using Gaussian processes
Ruseckaite, Aiste, (2016)
-
A Bayesian semiparametric realized stochastic volatility model
Liu, Jia, (2021)
-
Bayesian Nonparametric Modelling of the Return Distribution with Stochastic Volatility
Delatola, Eleni-Ioanna, (2011)
- More ...
-
Flexible mixture-amount models for business and industry using Gaussian processes
Ruseckaite, Aiste, (2016)
-
Bayesian D-optimal choice designs for mixtures
Ruseckaite, Aiste, (2014)
-
Flexible Mixture-Amount Models for Business and Industry Using Gaussian Processes
Ruseckaite, Aiste, (2016)
- More ...