Forecasting crude oil price : a deep forest ensemble approach
Year of publication: |
2024
|
---|---|
Authors: | Liu, Wei-han ; Xu, Xingfu |
Published in: |
Finance research letters. - New York : Elsevier Science, ISSN 1544-6123, ZDB-ID 2145766-9. - Vol. 69.2024, 2, Art.-No. 106153, p. 1-7
|
Subject: | Deep forest ensemble approach | LASSO | Machine learning methods | Support vector machine | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Mustererkennung | Pattern recognition | Forstwirtschaft | Forestry | Ölpreis | Oil price |
-
Modern prediction methods : new perspectives on a common problem
Putka, Dan J., (2018)
-
Machine-learning classifiers for imbalanced tornado data
Trafalis, Theodore B., (2014)
-
Göncü, Ahmet, (2024)
- More ...
-
Forecasting the equity premium : can machine learning beat the historical average?
Xu, Xingfu, (2024)
-
Forecasting China's inflation rate : evidence from machine learning methods
Xu, Xingfu, (2025)
-
Liu, Wei-han, (2002)
- More ...