Forecasting destination weekly hotel occupancy with big data
| Year of publication: |
September 2017
|
|---|---|
| Authors: | Pan, Bing ; Yang, Yang |
| Published in: |
Journal of travel research : a quarterly publication of the Travel and Tourism Research Association. - Thousand Oaks, Calif. [u.a.] : Sage, ISSN 0047-2875, ZDB-ID 864377-5. - Vol. 56.2017, 7, p. 957-970
|
| Subject: | tourism demand forecasting | big data | web traffic | time series | Markov switching dynamic regression model | search engine query | Prognoseverfahren | Forecasting model | Big Data | Big data | Tourismus | Tourism | Suchmaschine | Search engine | Zeitreihenanalyse | Time series analysis | Markov-Kette | Markov chain | Hotellerie | Hotel industry | Data Mining | Data mining | Regressionsanalyse | Regression analysis |
-
Predicting hotel demand using destination marketing organization's web traffic data
Yang, Yang, (2014)
-
Bokelmann, Björn, (2019)
-
Improving tourist arrival prediction : a big data and artificial neural network approach
Höpken, Wolfram Reinhold, (2021)
- More ...
-
Monitoring and forecasting tourist activities with big data
Pan, Bing, (2017)
-
Predicting hotel demand using destination marketing organization's web traffic data
Yang, Yang, (2014)
-
Online travel surveys and response patterns
Pan, Bing, (2010)
- More ...