Forecasting emergency department occupancy with advanced machine learning models and multivariable input
| Year of publication: |
2024
|
|---|---|
| Authors: | Tuominen, Jalmari ; Pulkkinen, Eetu ; Peltonen, Jaakko ; Kanniainen, Juho ; Oksala, Niku ; Palomäki, Ari ; Roine, Antti |
| Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier Science, ISSN 0169-2070, ZDB-ID 1495951-3. - Vol. 40.2024, 4, p. 1410-1420
|
| Subject: | Crowding | Emergency department | Forecasting | Multivariable analysis | Occupancy | Overcrowding | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Notaufnahme | Multivariate Analyse | Multivariate analysis | Krankenhaus | Hospital |
-
To predict or not to predict : the case of the emergency department
Somanchi, Sriram, (2022)
-
Predicting radiology service times for enhancing emergency department management
Aloini, Davide, (2025)
-
Probabilistic forecasting of patient waiting times in an emergency department
Arora, Siddharth, (2023)
- More ...
-
Visualizations for assessing convergence and mixing of Markov chain Monte Carlo simulations
Peltonen, Jaakko, (2009)
-
Vanhala, Mika, (2020)
-
Data visualization and analysis with self-organizing maps in learning metrics
Kaski, Samuel, (2001)
- More ...