Forecasting energy commodity prices : a large global dataset sparse approach
Year of publication: |
2021
|
---|---|
Authors: | Ferrario, Davide L. ; Ravazzolo, Francesco ; Vespingnani, Joaquin |
Published in: |
Energy economics. - Amsterdam : Elsevier, ISSN 0140-9883, ZDB-ID 795279-X. - Vol. 98.2021, p. 1-12
|
Subject: | Energy prices | Forecasting | Dynamic factor model | Sparse estimation | Penalized maximum likelihood | Prognoseverfahren | Forecasting model | Energiepreis | Energy price | Prognose | Forecast | Rohstoffpreis | Commodity price | Energieprognose | Energy forecast | Energiemarkt | Energy market | Theorie | Theory | Faktorenanalyse | Factor analysis | Schätzung | Estimation | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Ölpreis | Oil price |
-
Forecasting energy commodity prices : a large global dataset sparse approach
Ferrario, Davide L., (2019)
-
Forecasting energy commodity prices : a large global dataset sparse approach
Ferrari, Davide, (2019)
-
Forecasting energy commodity prices : a large global dataset sparse approach
Ferrari, Davide, (2021)
- More ...
-
Forecasting energy commodity prices : a large global dataset sparse approach
Ferrario, Davide L., (2019)
-
Nowcasting industrial production using linear and non-linear models of electricity demand
Galdi, Giulio, (2023)
-
De Pooter, Michiel, (2006)
- More ...