Forecasting financial market activity using a semiparametric fractionally integrated Log-ACD
Year of publication: |
April-June 2015
|
---|---|
Authors: | Feng, Yuanhua ; Chen Zhou |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 31.2015, 2, p. 349-363
|
Subject: | Approximately best linear predictor | Realized volatility | Financial forecasting | Long memory | Nonparametric scale function | Semi-FI-Log-ACD | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Nichtparametrisches Verfahren | Nonparametric statistics | Finanzmarkt | Financial market | Theorie | Theory | Zeitreihenanalyse | Time series analysis | ARMA-Modell | ARMA model | Kapitaleinkommen | Capital income | ARCH-Modell | ARCH model |
-
Forecasting financial market activity using a semiparametric fractionally integrated Log-ACD
Feng, Yuanhua, (2013)
-
Modeling and forecasting S&P 500 volatility : long memory, structural breaks and nonlinearity
Martens, Martin, (2004)
-
Long memory and nonlinearities in realized volatility : a Markov switching approach
Bordignon, Silvano, (2010)
- More ...
-
Forecasting financial market activity using a semiparametric fractionally integrated Log-ACD
Feng, Yuanhua, (2013)
-
An iterative plug-in algorithm for realized kernels
Feng, Yuanhua, (2015)
-
An iterative plug-in algorithm for realized kernels
Feng, Yuanhua, (2015)
- More ...