Forecasting for regulatory credit loss derived from the COVID-19 pandemic : a machine learning approach
Year of publication: |
2023
|
---|---|
Authors: | González, Marta Ramos ; Ureña, Antonio Partal ; Fernández-Aguado, Pilar Gómez |
Published in: |
Research in international business and finance. - Amsterdam [u.a.] : Elsevier, ISSN 0275-5319, ZDB-ID 424514-3. - Vol. 64.2023, p. 1-14
|
Subject: | COVID-19 | Machine learning | Credit risk | Defaulted exposures | Internal-rating-based | Kreditrisiko | Künstliche Intelligenz | Artificial intelligence | Coronavirus | Epidemie | Epidemic | Insolvenz | Insolvency | Prognoseverfahren | Forecasting model | Wirkungsanalyse | Impact assessment | Kreditwürdigkeit | Credit rating |
-
Aranha, Meera, (2023)
-
Guo, Weidong, (2022)
-
A deep learning approach to estimate forward default intensities
Divernois, Marc-Aurèle, (2020)
- More ...
-
Proposal on ELBE and LGD in-default: Tackling capital requirements after the financial crisis
González, Marta Ramos, (2018)
-
Proposal on ELBE and LGD in-default : tackling capital requirements after the financial crisis
González, Marta Ramos, (2018)
-
Evaluation of european deposit insurance scheme funding based on risk analysis
Fernández-Aguado, Pilar Gómez, (2022)
- More ...