Forecasting Long-Term Electricity Demand Time Series Using Artificial Neural Networks
| Year of publication: |
2020
|
|---|---|
| Authors: | Behm, Christian ; Nolting, Lars ; Praktiknjo, Aaron |
| Publisher: |
[S.l.] : SSRN |
| Subject: | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Theorie | Theory | Energieprognose | Energy forecast | Energiekonsum | Energy consumption | Elektrizität | Electricity | Nachfrage | Demand |
| Extent: | 1 Online-Ressource (39 p) |
|---|---|
| Series: | USAEE Working Paper ; No. 20-432 |
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 23, 2020 erstellt |
| Other identifiers: | 10.2139/ssrn.3524137 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Electricity consumption prediction using artificial intelligence
Čegovnik, Tomaž, (2023)
-
Aghaeifar, Roya, (2013)
-
Forecasting high-frequency electricity demand with a diffusion index model
Pons Rotger, Gabriel, (2006)
- More ...
-
Kockel, Christina, (2020)
-
Die Versorgungssicherheit mit Elektrizität im Kontext von Liberalisierung und Energiewende
Nolting, Lars, (2021)
-
Artificial intelligence and design of experiments for resource adequacy assessment in power systems
Priesmann, J., (2024)
- More ...