Forecasting Oil Prices With Penalized Regressions, Variance Risk Premia and Google Data
Year of publication: |
[2023]
|
---|---|
Authors: | Lycheva, Maria ; Mironenkov, Alexey ; Kurbatskii, Alexey ; Fantazzini, Dean |
Publisher: |
[S.l.] : SSRN |
Subject: | Ölpreis | Oil price | Prognoseverfahren | Forecasting model | Risikoprämie | Risk premium | Regressionsanalyse | Regression analysis | Theorie | Theory |
Extent: | 1 Online-Ressource (33 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: Applied Econometrics Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 8, 2023 erstellt |
Classification: | C22 - Time-Series Models ; C32 - Time-Series Models ; C52 - Model Evaluation and Testing ; C53 - Forecasting and Other Model Applications ; c55 ; c58 ; G17 - Financial Forecasting ; O13 - Agriculture; Natural Resources; Energy; Environment; Other Primary Products ; q47 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting the Real Price of Oil Using Online Search Data
Fantazzini, Dean, (2014)
-
Machine Learning Panel Data Regressions with an Application to Nowcasting Price Earnings Ratios
Babii, Andrii, (2020)
-
A penalized two-pass regression to predict stock returns with time-varying risk premia
Bakalli, Gaetan, (2021)
- More ...
-
Forecasting oil prices with penalized regressions, variance risk premia and Google data
Fantazzini, Dean, (2022)
-
Fantazzini, Dean, (2021)
-
Fantazzini, Dean, (2021)
- More ...