Forecasting realized variance measures using time-varying coefficient models
Year of publication: |
2018
|
---|---|
Authors: | Bekierman, Jeremias ; Manner, Hans |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 34.2018, 2, p. 276-287
|
Subject: | Volatility forecasting | Realized volatility | Measurement error | State space model | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Zustandsraummodell | Statistischer Fehler | Statistical error | Theorie | Theory | Schätzung | Estimation | Zeitreihenanalyse | Time series analysis | Varianzanalyse | Analysis of variance |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: Volume 37, issue 3 (July/September 2021), Seite 1304-1305 |
Other identifiers: | 10.1016/j.ijforecast.2017.12.005 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting covariance matrices : a mixed approach
Halbleib, Roxana, (2016)
-
Time-varying parameters realized GARCH models for tracking attenuation bias in volatility dynamics
Gerlach, Richard, (2020)
-
A latent factor model for forecasting realized variances
Calzolari, Giorgio, (2021)
- More ...
-
Improved Forecasting of Realized Variance Measures
Bekierman, Jeremias, (2016)
-
A Mixed Frequency Stochastic Volatility Model for Intraday Stock Market Returns
Bekierman, Jeremias, (2019)
-
Estimating stochastic volatility models using realized measures
Bekierman, Jeremias, (2016)
- More ...