Forecasting realized volatility with machine learning : panel data perspective
Year of publication: |
2023
|
---|---|
Authors: | Zhu, Haibin ; Bai, Lu ; He, Lidan ; Liu, Zhi |
Published in: |
Journal of empirical finance. - Amsterdam [u.a.] : Elsevier, ISSN 0927-5398, ZDB-ID 1158263-7. - Vol. 73.2023, p. 251-271
|
Subject: | Forecasting | Machine learning | Panel data analysis | Realized volatility | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Panel | Panel study | Prognose | Forecast | Neuronale Netze | Neural networks |
-
Machine-learning stock market volatility : predictability, drivers, and economic value
Díaz, Juan, (2024)
-
Gupta, Rangan, (2023)
-
Forecasting realized volatility of crude oil futures prices based on machine learning
Luo, Jiawen, (2024)
- More ...
-
On bivariate time-varying price staleness
Zhu, Haibin, (2024)
-
Explaining Epps Effect When Bivariate Price Staleness Is Present
Zhu, Haibin, (2022)
-
On Multi-Dimensional Time-Varying Price Staleness
Zhu, Haibin, (2021)
- More ...