Forecasting relative returns for S&P 500 stocks using machine learning
| Year of publication: |
2024
|
|---|---|
| Authors: | Htet Htet Htun ; Biehl, Michael ; Petkov, Nicolai |
| Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 10.2024, Art.-No. 118, p. 1-16
|
| Subject: | Stock returns prediction | Relative returns | Classifcation | Random forest | Support vector machine | Long short-term memory | Machine learning | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Mustererkennung | Pattern recognition | Prognose | Forecast | Kapitalmarktrendite | Capital market returns | Neuronale Netze | Neural networks |
-
Forecasting natural rubber prices using commodity market indicators : a machine learning approach
Nyondo, Precious, (2024)
-
Machine learning on stock price movement forecast : the sample of the Taiwan stock exchange
Huang, Chin-sheng, (2019)
-
The predictability of the exchange rate when combining machine learning and fundamental models
Zhang, Yuchen, (2020)
- More ...
-
Survey of feature selection and extraction techniques for stock market prediction
Htet Htet Htun, (2023)
-
Die Landwirtschaft in China und Indien : Vergleich zweier Entwicklungswege
Biehl, Max, (1979)
-
Training multilayer perceptrons by principal component analysis
Biehl, M., (2001)
- More ...