Forecasting sovereign risk in the euro area via machine learning
Year of publication: |
2023
|
---|---|
Authors: | Belly, Guillaume ; Boeckelmann, Lukas ; Caicedo Graciano, Carlos Mateo ; Di Iorio, Alberto ; Istrefi, Klodiana ; Siakoulis, Vasileios ; Stalla-Bourdillon, Arthur |
Published in: |
Journal of forecasting. - New York, NY : Wiley Interscience, ISSN 1099-131X, ZDB-ID 2001645-1. - Vol. 42.2023, 3, p. 657-684
|
Subject: | artificial neural networks | Euro area | forecasting | Google Trends | machine learning | random forests | sovereign risk | support vector machines | text mining | XGBOOST | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Eurozone | Länderrisiko | Country risk | Prognoseverfahren | Forecasting model | Mustererkennung | Pattern recognition | EU-Staaten | EU countries | Prognose | Forecast | Öffentliche Anleihe | Public bond |
-
Towards an early warning system for sovereign defaults leveraging on machine learning methodologies
Petropoulos, Anastasios, (2022)
-
Wen, Xiao, (2021)
-
Göncü, Ahmet, (2024)
- More ...
-
Forecasting Sovereign Risk in the Euro Area via Machine Learning
Belly, Guillaume, (2021)
-
Report on the payment attitudes of consumers in Italy : results from the ECB SPACE 2022 survey
Coletti, Gabriele, (2023)
-
Acta, non verba: interlinking fast payment systems to enhance cross-border payments
Di Iorio, Alberto, (2025)
- More ...