Forecasting stock price volatility : new evidence from the GARCH-MIDAS model
Year of publication: |
2020
|
---|---|
Authors: | Wang, Lu ; Ma, Feng ; Liu, Jing ; Yang, Lin |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 36.2020, 2, p. 684-694
|
Subject: | Stock market | GARCH-MIDAS | Out-of-sample forecasts | Volatility forecasting | Forecasting evaluation | Volatilität | Volatility | Börsenkurs | Share price | Prognoseverfahren | Forecasting model | ARCH-Modell | ARCH model | Aktienmarkt | Theorie | Theory |
Description of contents: | Description [doi.org] |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: International journal of forecasting, Volume 37, issue 3 (July/September 2021), Seite 1329-1330 |
Other identifiers: | 10.1016/j.ijforecast.2019.08.005 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Liang, Chao, (2024)
-
Li, Zhao-Chen, (2024)
-
Forecasting volatility in the Indian equity market using return and range-based models
Raju, Karthik, (2017)
- More ...
-
The information content of uncertainty indices for natural gas futures volatility forecasting
Liang, Chao, (2021)
-
Do extreme shocks help forecast oil price volatility? The augmented <scp>GARCH‐MIDAS</scp> approach
Wang, Lu, (2021)
-
Forecasting stock volatility in the presence of extreme shocks : Short‐term and long‐term effects
Wang, Lu, (2020)
- More ...