Forecasting the aggregate stock market volatility in a data-rich world
Year of publication: |
2020
|
---|---|
Authors: | Liu, Li ; Ma, Feng ; Zeng, Qing ; Zhang, Yaojie |
Published in: |
Applied economics. - New York, NY : Routledge, ISSN 1466-4283, ZDB-ID 1473581-7. - Vol. 52.2020, 32, p. 3448-3463
|
Subject: | Combination forecasts | Economic value | Lasso and elastic net | Monthly realized volatility | Volatility forecasting | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Börsenkurs | Share price | Prognose | Forecast | Aktienmarkt | Stock market | Kapitaleinkommen | Capital income | Welt | World | Wirtschaftsprognose | Economic forecast |
-
Liang, Chao, (2023)
-
Forecasting volatility in the Chinese stock market under model uncertainty
Li, Yong, (2013)
-
A multivariate Kernel approach to forecasting the variance covariance of stock market returns
Becker, Ralf, (2018)
- More ...
-
Forecasting stock returns : do less powerful predictors help?
Zhang, Yaojie, (2019)
-
Are low-frequency data really uninformative? : a forecasting combination perspective
Ma, Feng, (2018)
-
Policy uncertainty and carbon neutrality : evidence from China
Zeng, Qing, (2022)
- More ...