Forecasting the insolvency of US banks using support vector machines (SVMs) based on local learning feature selection
Year of publication: |
2013
|
---|---|
Authors: | Papadimitriou, Theophilos ; Gogas, Periklis ; Plakandaras, Vasilios ; Mourmouris, John C. |
Published in: |
International Journal of Computational Economics and Econometrics. - Inderscience Enterprises Ltd, ISSN 1757-1170. - Vol. 3.2013, 1/2, p. 83-90
|
Publisher: |
Inderscience Enterprises Ltd |
Subject: | bank insolvency | SVM | support vector machines | local learning | feature selection | insolvency forecasting | US banks | USA | United States | banking industry | financial statements | bank default | banking collapse |
-
Papadimitriou, Theophilos, (2013)
-
Gogas, Periklis, (2013)
-
Supervised learning approaches and feature selection - a case study in diabetes
Praharsi, Yugowati, (2013)
- More ...
-
Papadimitriou, Theophilos, (2013)
-
Market Sentiment and Exchange Rate Directional Forecasting
Plakandaras, Vasilios, (2014)
-
Forecasting the U.S. Real House Price Index
Plakandaras, Vasilios, (2014)
- More ...