Forecasting US GDP growth rates in a rich environment of macroeconomic data
Year of publication: |
2024
|
---|---|
Authors: | Lu, Fei ; Zeng, Qing ; Bouri, Elie ; Tao, Ying |
Published in: |
International review of economics & finance : IREF. - Amsterdam [u.a.] : Elsevier Science, ISSN 1059-0560, ZDB-ID 2026509-8. - Vol. 95.2024, Art.-No. 103476, p. 1-20
|
Subject: | US GDP growth rate | Macroeconomic variables | Macroeconomic attention indices | Macroeconomic risks | MIDAS-LASSO | Nationaleinkommen | National income | Wirtschaftswachstum | Economic growth | Makroökonomik | Macroeconomics | Prognoseverfahren | Forecasting model | Wirtschaftsindikator | Economic indicator | Bruttoinlandsprodukt | Gross domestic product | Theorie | Theory | Wirtschaftsprognose | Economic forecast | Frühindikator | Leading indicator |
-
Nowcasting and Forecasting GDP Growth with Machine-Learning Sentiment Indicators
Claveria, Oscar, (2021)
-
Macroeconomics, nonlinearities, and the business cycle
Reif, Magnus, (2019)
-
Aggregate earnings and gross domestic product : International evidence
Lalwani, Vaibhav, (2020)
- More ...
-
Geopolitical risk and excess stock returns predictability : new evidence from a century of data
Ma, Feng, (2022)
-
Lu, Fei, (2024)
-
Natural gas volatility predictability in a data-rich world
Lu, Fei, (2022)
- More ...