Forecasting US Inflation Using Bayesian Nonparametric Models
Year of publication: |
[2022]
|
---|---|
Authors: | Clark, Todd E. ; Huber, Florian ; Koop, Gary ; Marcellino, Massimiliano |
Publisher: |
[S.l.] : SSRN |
Subject: | Inflation | Prognoseverfahren | Forecasting model | Bayes-Statistik | Bayesian inference | Nichtparametrisches Verfahren | Nonparametric statistics | Theorie | Theory | USA | United States |
Extent: | 1 Online-Ressource (39 p) |
---|---|
Series: | FRB of Cleveland Working Paper ; No. 22-05 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 2, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4048337 [DOI] |
Classification: | C11 - Bayesian Analysis ; C32 - Time-Series Models ; C53 - Forecasting and Other Model Applications |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Bayesian Nonparametric Forecast Pooling
Jin, Xin, (2020)
-
Bayesian demographic modeling and forecasting : an application to U.S. mortality
Reichmuth, Wolfgang H., (2008)
-
Modeling and forecasting age-specific mortality : a Bayesian approach
Reichmuth, Wolfgang H., (2008)
- More ...
-
Tail Forecasting with Multivariate Bayesian Additive Regression Trees
Clark, Todd E., (2021)
-
Investigating growth-at-risk using a multicountry non-parametric quantile factor model
Clark, Todd E., (2023)
-
Tail forecasting with multivariate Bayesian additive regression trees
Clark, Todd E., (2021)
- More ...