Forecasting ward-level bed requirements to aid pandemic resource planning : lessons learned and future directions
Year of publication: |
2023
|
---|---|
Authors: | Johnson, Michael R. ; Naik, Hiten ; Chan, Wei Siang ; Greiner, Jesse ; Michaleski, Matt ; Liu, Dong ; Silvestre, Bruno ; McCarthy, Ian P. |
Published in: |
Health care management science : a new journal serving the international health care management community. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9389, ZDB-ID 2006272-2. - Vol. 26.2023, 3, p. 477-500
|
Subject: | COVID-19 | Forecasting | Machine learning | Pandemic resource planning | Traffic Control Bundling | Ward-level forecasting | Coronavirus | Prognoseverfahren | Forecasting model | Epidemie | Epidemic | Künstliche Intelligenz | Artificial intelligence |
-
Short-term forecasting of the Coronavirus pandemic
Castle, Jennifer, (2020)
-
Short-term forecasting of the coronavirus pandemic
Doornik, Jurgen A., (2022)
-
Labor market forecasting in unprecedented times : a machine learning approach
Orozco-Castañeda, Johanna M., (2024)
- More ...
-
Product recovery decisions within the context of extended producer responsibility
Johnson, Michael R., (2014)
-
A Typology of University Research Park Strategies : What Parks Do and Why it Matters
McCarthy, Ian P., (2018)
-
Toward a phylogenetic reconstruction of organizational life
McCarthy, Ian P., (2005)
- More ...