Forecasting worldwide empty container availability with machine learning techniques
Year of publication: |
2022
|
---|---|
Authors: | Martius, Christoph ; Kretschmann, Lutz ; Zacharias, Miriam ; Jahn, Carlos ; John, Ole |
Published in: |
Journal of shipping and trade. - [London] : SpringerOpen, ISSN 2364-4575, ZDB-ID 2843080-3. - Vol. 7.2022, Art.-No. 19, p. 1-24
|
Subject: | Empty container relocation | Machine learning | Maritime logistics forecasts | Mixture density network | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Containerschifffahrt | Container shipping | Containerterminal | Container terminal | Containerverkehr | Container transport | Algorithmus | Algorithm |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1186/s41072-022-00120-x [DOI] hdl:10419/298930 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Thinking outside the container : a machine learning approach to forecasting trade flows
Stamer, Vincent, (2021)
-
Container freight rate level forecasting with machine learning methods
Feng, Yaling, (2022)
-
A comparison of time series methods for forecasting container throughput
Chan, Hing Kai, (2019)
- More ...
-
Forecasting worldwide empty container availability with machine learning techniques
Martius, Christoph, (2022)
-
A first step towards automated image-based container inspections
Klöver, Steffen, (2020)
-
A first step towards automated image-based container inspections
Klöver, Steffen, (2020)
- More ...