Fractional Integration with Drift: Estimation in Small Samples.
We examine the finite-sample behavior of estimators of the order of integration in a fractionally integrated time-series model. In particular, we compare exact time-domain likelihood estimation to frequency-domain approximate likelihood estimation. We show that over-differencing is of critical importance for time-domain maximum-likelihood estimation in finite samples. Over-differencing moves the differencing parameter (in the over-differenced model) away from the boundary of the parameter space, while at the same time obviating the need to estimate the drift parameter. The two estimators that we compare are asymptotically equivalent. In small samples, however, the time-domain estimator has smaller mean squared error than the frequency-domain estimator. Although the frequency-domain estimator has larger bias than the time-domain estimator for some regions of the parameter bias, it can also have smaller bias. We use a simulation procedure which exploits the approximate linearity of the bias function to reduce the bias in the time-domain estimator.
Year of publication: |
1997
|
---|---|
Authors: | Smith Jr., Anthony A ; Sowell, Fallaw ; Zin, Stanley E |
Published in: |
Empirical Economics. - Department of Economics and Finance Research and Teaching. - Vol. 22.1997, 1, p. 103-16
|
Publisher: |
Department of Economics and Finance Research and Teaching |
Saved in:
Saved in favorites
Similar items by person
-
Consumption-Savings Decisions with Quasi-Geometric Discounting
Krusell, Per, (2001)
-
Equilibrium Welfare and Government Policy with Quasi-Geometric Discounting
Krusell, Per, (2001)
-
Epstein, Larry G, (1991)
- More ...