From big data to econophysics and its use to explain complex phenomena
Year of publication: |
2020
|
---|---|
Authors: | Ferreira, Paulo ; Pereira, Eder Johnson de Area Leão ; Pereira, Hernane Borges de Barros |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 13.2020, 7/153, p. 1-10
|
Subject: | big data | complexity | networks | power laws | stock markets | Big Data | Big data | Ökonophysik | Econophysics | Data Mining | Data mining | Aktienmarkt | Stock market |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm13070153 [DOI] hdl:10419/239241 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Amstad, Marlene, (2021)
-
Intraday market predictability : a machine learning approach
Huddleston, Dillon, (2023)
-
Quantifying sentiment for the Japanese economy as predictors of stock prices
Ishijima, Hiroshi, (2014)
- More ...
-
Sectoral interdependence, network analysis, and regional resilience in Brazil
Ribeiro, Luiz Carlos de Santana, (2023)
-
Assessing productive structures in Brazil with dynamic time varying graphs
Ribeiro, Luiz Carlos de Santana, (2025)
-
Silva, Marcus F. da, (2013)
- More ...