Fully data-driven normalized and exponentiated Kernel density estimator with Hyvärinen score
| Year of publication: |
2025
|
|---|---|
| Authors: | Imai, Shunsuke ; Koriyama, Takuya ; Yonekura, Shouto ; Sugasawa, Shonosuke ; Nishiyama, Yoshihiko |
| Published in: |
Journal of business & economic statistics : JBES ; a publication of the American Statistical Association. - Abingdon : Taylor & Francis, ISSN 1537-2707, ZDB-ID 2043744-4. - Vol. 43.2025, 1, p. 110-121
|
| Subject: | Bandwidth selection | Density estimation | Fisher divergence | Kernel smoothing | Unnormalized model | Schätztheorie | Estimation theory | Statistische Verteilung | Statistical distribution | Nichtparametrisches Verfahren | Nonparametric statistics |
-
Empirical likelihood and uniform convergence rates for dyadic kernel density estimation
Chiang, Harold D., (2023)
-
Nonparametric localized bandwidth selection in Kernel density estimation
Cheng, Tingting, (2016)
-
Fusion of hard and soft information in nonparametric density estimation
Royset, Johannes O., (2015)
- More ...
-
Higher-order asymptotic properties of kernel density estimator with plug-in bandwidth
Imai, Shunsuke, (2022)
-
Linguistic distance and economic development : A cross‐country analysis
Nakagawa, Mariko, (2021)
-
Bayesian approach to Lorenz curve using time series grouped data
Kobayashi, Genya, (2022)
- More ...