Gaussian Process Forecast with multidimensional distributional entries
Year of publication: |
2018
|
---|---|
Authors: | Bachoc, Francois ; Suvorikova, Alexandra ; Loubes, Jean-Michel ; Spokoiny, Vladimir |
Publisher: |
Berlin : Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series" |
Subject: | Gaussian Process | Kernel methods | Wasserstein Distance |
Series: | IRTG 1792 Discussion Paper ; 2018-030 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
Other identifiers: | hdl:10419/230741 [Handle] RePEc:zbw:irtgdp:2018030 [RePEc] |
Classification: | C00 - Mathematical and Quantitative Methods. General |
Source: |
-
Instrumental variables regression
Koziuk, Andzhey, (2018)
-
One-Factor Copula-Based Model for Credit Portfolio
Kolman, Marek, (2014)
-
Computational Statistics and Data Visualization
Unwin, Antony, (2007)
- More ...
-
Construction of Non-asymptotic Confidence Sets in 2 -Wasserstein Space
Ebert, Johannes, (2018)
-
Valid confidence intervals for post-model-selection predictors
Bachoc, Francois, (2014)
-
Valid confidence intervals for post-model-selection predictors
Bachoc, Francois, (2014)
- More ...