Gradient boosting for quantitative finance
Year of publication: |
2021
|
---|---|
Authors: | Davis, Jesse ; Devos, Laurens ; Reyners, Sofie ; Schoutens, Wim |
Published in: |
The journal of computational finance. - London : Infopro Digital Risk, ISSN 1460-1559, ZDB-ID 1433009-X. - Vol. 24.2021, 4, p. 1-40
|
Subject: | machine learning | regression trees | derivatives pricing | exotic options | computation time | Optionspreistheorie | Option pricing theory | Künstliche Intelligenz | Artificial intelligence | Derivat | Derivative | Optionsgeschäft | Option trading | Regressionsanalyse | Regression analysis | Finanzmathematik | Mathematical finance |
-
Derivatives pricing via machine learning
Ye, Tingting, (2019)
-
Pricing options and computing implied volatilities using neural networks
Liu, Shuaiqiang, (2019)
-
Pricing cryptocurrency options with machine learning regression for handling market volatility
Brini, Alessio, (2024)
- More ...
-
Madan, Dilip B., (2018)
-
ESG: a new dimension in portfolio allocation
De Spiegeleer, Jan, (2023)
-
Machine Learning for Quantitative Finance : Fast Derivative Pricing, Hedging and Fitting
De Spiegeleer, Jan, (2018)
- More ...