Heterogeneous component multiplicative error models for forecasting trading volumes
Year of publication: |
2019
|
---|---|
Authors: | Naimoli, Antonio ; Storti, Giuseppe |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 35.2019, 4, p. 1332-1355
|
Subject: | Dynamic component models | Forecasting | Intra-daily trading volume | Long-range dependence | MIDAS | Handelsvolumen der Börse | Trading volume | Prognoseverfahren | Forecasting model | Theorie | Theory | Prognose | Forecast | Zeitreihenanalyse | Time series analysis | Volatilität | Volatility | ARCH-Modell | ARCH model |
Description of contents: | Description [doi.org] |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: International journal of forecasting, Volume 37, issue 3 (July/September 2021), Seite 1325-1326 |
Other identifiers: | 10.1016/j.ijforecast.2019.06.002 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A reality check on the GARCH-MIDAS volatility models
Virk, Nader, (2024)
-
Improving variance forecasts : the role of Realized Variance features
Papantonis, Ioannis, (2023)
-
Long memory and structural breaks of cryptocurrencies trading volume
Ahmed, Mohamed Shaker, (2023)
- More ...
-
Gerlach, Richard, (2018)
-
Heterogeneous component multiplicative error models for forecasting trading volumes
Naimoli, Antonio, (2019)
-
Gerlach, Richard, (2018)
- More ...