Hidden Markov and Semi-Markov models with multivariate leptokurtic-normal components for robust modeling of daily returns series
Year of publication: |
2019
|
---|---|
Authors: | Maruotti, Antonello ; Punzo, Antonio ; Bagnato, Luca |
Published in: |
Journal of financial econometrics. - Oxford : Oxford University Press, ISSN 1479-8417, ZDB-ID 2065613-0. - Vol. 17.2019, 1, p. 91-117
|
Subject: | daily returns | elliptical distributions | EM algorithm | hidden Markov model | hiddensemi-Markov model | kurtosis | multivariate time series | Markov-Kette | Markov chain | Theorie | Theory | Zeitreihenanalyse | Time series analysis | Kapitaleinkommen | Capital income | ARCH-Modell | ARCH model | Statistische Verteilung | Statistical distribution | Multivariate Analyse | Multivariate analysis | Stochastischer Prozess | Stochastic process |
-
Long memory of financial time series and hidden Markov models with timeâvarying parameters
Nystrup, Peter, (2017)
-
Mixed normal conditional heteroskedasticity
Haas, Markus, (2002)
-
Idier, Julien, (2011)
- More ...
-
Compound unimodal distributions for insurance losses
Punzo, Antonio, (2018)
-
Detecting serial dependencies with the reproducibility probability autodependogram
Bagnato, Luca, (2014)
-
Bagnato, Luca, (2013)
- More ...