High dimensional stochastic regression with latent factors, endogeneity and nonlinearity
Year of publication: |
December 2015
|
---|---|
Authors: | Chang, Jinyuan ; Guo, Bin ; Yao, Qiwei |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 189.2015, 2, p. 297-312
|
Subject: | α-mixing | Dimension reduction | Instrument variables | Nonstationarity | Time series | Zeitreihenanalyse | Time series analysis | Regressionsanalyse | Regression analysis | IV-Schätzung | Instrumental variables | Stochastischer Prozess | Stochastic process | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Multivariate Analyse | Multivariate analysis |
-
Discrete fourier transforms of fractional processes with econometric applications
Phillips, Peter C. B., (2021)
-
Teuber, Timo, (2013)
-
A nonparametric regression cross spectrum for multivariate time series
Beran, Jan, (2008)
- More ...
-
Confidence regions for entries of a large precision matrix
Chang, Jinyuan, (2018)
-
An autocovariance-based learning framework for high-dimensional functional time series
Chang, Jinyuan, (2024)
-
On the Approximate Maximum Likelihood Estimation for Diffusion Processes
Chang, Jinyuan, (2011)
- More ...