High-dimensional text datasets clustering algorithm based on cuckoo search and latent semantic indexing
Saida Ishak Boushaki, Nadjet Kamel and Omar Bendjeghaba
Year of publication: |
September 2018
|
---|---|
Authors: | Ishak-Boushaki, Saida ; Kamel, Nadjet ; Bendjeghaba, Omar |
Published in: |
Journal of information & knowledge management : JIKM. - Singapore : IKMS, ISSN 0219-6492, ZDB-ID 2225563-1. - Vol. 17.2018, 3, p. 1850033-1-24
|
Subject: | Cucksoo search optimisation | high-dimensional text clustering | number of clusters | incremental clustering | internal validity index | latent semantic indexing | document clustering | vector space model | optimisation | metaheuristic | Clusteranalyse | Cluster analysis | Regionales Cluster | Regional cluster | Algorithmus | Algorithm | Semantisches Web | Semantic web | Metadaten | Metadata | Online-Recherche | Online search |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
A semantics-based method for clustering of Chinese web search results
Zhang, Hui, (2014)
-
Evaluation of news search engines based on information retrieval models
Bokhari, Mohammad Ubaidullah, (2021)
-
Semantic clustering approach for documents in distributed system framework with multi-node setup
Priyadarshini, R., (2018)
- More ...