How can lenders prosper? : comparing machine learning approaches to identify profitable peer-to-peer loan investments
Year of publication: |
2021
|
---|---|
Authors: | Fitzpatrick, Trevor ; Mues, Christophe |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 294.2021, 2 (16.10.), p. 711-722
|
Subject: | Credit scoring | Ensemble learning | Investment analysis | P2P Lending | Predictive modelling | Kreditwürdigkeit | Credit rating | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kreditgeschäft | Bank lending | Finanzanalyse | Financial analysis | Kreditrisiko | Credit risk |
-
Impact of mortgage soft information in loan pricing on default prediction using machine learning
Luong, Thi Mai, (2023)
-
Forecasting loan default in Europe with machine learning
Barbaglia, Luca, (2023)
-
Impact of Mortgage Soft Information in Loan Pricing on Default Prediction using Machine Learning
Luong, Mai, (2022)
- More ...
-
Fitzpatrick, Trevor, (2016)
-
What drives EU banks’ stock returns? Bank-level evidence using the dynamic dividend-discount model
Castrén, Olli, (2006)
-
Measuring Bank Profit Efficiency
Fitzpatrick, Trevor, (2005)
- More ...